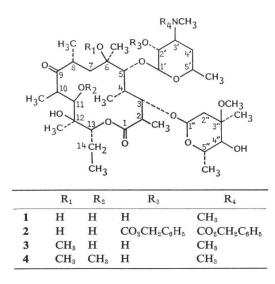
CHEMICAL MODIFICATION OF ERYTHROMYCINS. I. SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF 6-*O*-METHYLERYTHROMYCINS A


Sir:

Erythromycin A (1) is the best known of the medicinally important macrolide antibiotics. Among lots of its chemical modification, the *O*-alkylation of 1 has not been reported, except for 11-*O*-alkylation¹⁾ of erythromycin B (12-deoxy-erythromycin A).

In this paper we describe the preparation and the antibacterial activity of O-methyl derivatives; 6-O-methylerythromycin A (3) and 6,11-di-O-methylerythromycin A (4).

2'-O,3'-N-Bis(benzyloxycarbonyl)-*N*-demethylerythromycin A (2)²⁾ was methylated with CH₃I (8 equiv) and NaH (1.2 equiv) in dimethyl sulfoxide - tetrahydrofuran (1:1) under ice-cooling for 30 minutes. The mixture, thus obtained, was subjected to silica gel column chromatography using ethyl acetate - hexane (1:2) as an eluent to afford two products A (35% yield) and B (42% yield). Rf values of A and B were 0.16 and 0.09, respectively, by silica gel thin-layer chromatography using ethyl acetate - hexane (1:1).

Product A was hydrogenated with Pd-black as catalyst in ethanol in the presence of a sodium acetate - acetic acid buffer (pH 5) to remove benzyloxycarbonyl groups, followed by the reductive methylation with formaldehyde and

hydrogen to yield the corresponding dimethylamino derivative. This substance was recrystallized from chloroform - isopropyl ether to give the mixture of **3** and **4** as colorless needles (95%) yield, the ratio of **3** to **4** (4:1) was determined by ¹H NMR or high performance liquid chromatography analysis).

The crystals were extracted repeatedly with ethyl ether, and the ether extract and ether-insoluble solid were separated respectively. The ether extract was evaporated and the residue was recrystallized twice from ethanol to yield 3 (14.3 % from 2) as needles: mp $222 \sim 225^{\circ}$ C; $[\alpha]_{D}^{24} - 90.4^{\circ}$ (c 1.0, CHCl₃); IR (KBr) 3450, 1730, 1690 cm⁻¹; UV (CHCl₃) 288 nm (ε 27.9); ¹H NMR (CDCl₃) δ 0.84 (t, 7.3, 14-CH₃), 1.14 (s, 6-CH₃), 2.28 (s, N(CH₃)₂), 3.03 (s, 6-OCH₃), 3.19 (dd, 10.2, 7.2, H-2'), 3.33 (s, 3"-OCH₃), 3.67 (d, 7.4, H-5), 3.76 (d, 1.5, H-11), 3.77 (dd, 9.0, ~1, H-3), 4.44 (d, 7.2, H-1'), 4.93 (dd, 4.6, ~1, H-1"), 5.06 (dd, 10.9, 2.2, H-13); Anal Calcd for C₃₈H₆₉NO₁₃: C 61.02, H 9.30, N 1.87. Found: C 60.57, H 9.13, N 1.82.

The ether-insoluble solid was subjected to the reversed phase silica gel column chromatography (Merck, silica gel 60 silanized) using phosphate buffer (0.1 M, pH 7) - methanol (2:3) to give 3 (Rf 0.42 by TLC using silanized silica gel plate/ above cited solvent, 1.1% yield from 2) and 4 (Rf 0.39, 3% yield from 2). Recrystallization of 4 from dichloromethane - ethyl ether gave colorless needles: mp $252 \sim 256^{\circ}$ C (dec); $[\alpha]_{\rm p}^{24} - 102.8^{\circ}$ (c 1.0, CHCl_s); IR (KBr) 3485, 3430, 1724, 1703 cm⁻¹; UV (CHCl_s) 292 nm (ε 23.6); ¹H NMR (CDCl₃) δ 0.83 (t, 7.3, 14-CH₃), 1.41 (s, $6-CH_3$), 2.28 (s, N(CH_3)₂), 3.10 (s, $6-OCH_3$), 3.19 (dd, 10.2, 7.2, H-2'), 3.33 (s, 3"-OCH₃), 3.44 (d, ~1, H-11), 3.58 (s, 11-OCH₃), 3.71 (dd, 10.6, ~1, H-3), 3.76 (d, 7.1, H-5), 4.48 (d, 7.2, H-1'), 4.94 (dd, 4.6, ~1, H-1"), 4.97 (dd, 10.3, 2.2, H-13); Anal Calcd for C₃₉H₇₁NO₁₃: C 61.47, H 9.39, N 1.84. Found: C 61.65, H 9.54, N 1.81.

The ¹H NMR spectra of both 3 and 4 showed the presence of new methoxy signals at 3.03 ppm in 3 and at 3.10, 3.58 ppm in 4. FD mass spectra of 3 and 4 showed [MH]⁺ at m/z 748 and 762, respectively. In addition prominent ions attributed to desosamine and cladinose (m/z 158 and 159, respectively) were present in EI mass spectra, indicating that the new methoxy groups in both compounds were substituted on the

Carbon number –	Chemical shifts			Carbon muchan	Chemical shifts		
	1	3	4	Carbon number –	1	3	4
1	175.9	175.9	175.7	12-Me	16.2	16.0	17.5
2	45.1	45.1	45.0	14-Me	10.7	10.6	10.5
3	80.0	78.4	78.7	6-OMe		50.6	50.6
4	39.5	39.2	38.3	11-OMe			60.8
5	83.6	80.8	79.8	1'	103.3	102.9	102.6
6	74.9	78.4	79.1	2'	71.0	71.0	71.
7	38.5	39.4	37.7	3'	65.6	65.6	65.0
8	44.9	45.3	45.5	4'	28.7	28.6	28.0
9	221.7	221.0	217.4	5'	68.9	68.8	68.
10	38.0	37.2	38.0	3'-NMe ₂	40.3	40.3	40.
11	68.9	69.1	77.8	5'-Me	21.5	21.5	21.
12	74.8	74.3	76.1	1''	96.3	96.1	96.
13	77.0	76.6	77.5	2''	35.0	34.9	35.
14	21.1	21.0	21.5	3''	72.6	72.7	72.
2-Me	16.0	16.0	16.1	4''	78.0	78.0	78.
4-Me	9.2	9.1	9.3	5''	65.6	65.7	65.
6-Me	26.8	19.8	20.4	3''-Me	21.4	21.5	21.
8-Me	18.3	18.0	19.4	5''-Me	18.6	18.7	18.
10-Me	12.0	12.3	12.8	3''-OMe	49.5	49.5	49.

Table 1. ¹⁸C NMR chemical shifts* of erythromycin A (1)**, 6-*O*-methylerythromycin A (3) and 6,11-di-*O*-methylerythromycin A (4).

* Chemical shifts (ppm downfield from Me₄Si) were measured at 50.3 MHz in CDCl₃.

** For the ¹⁸C NMR assignment of erythromycin A (1), see ref 3.

T		Minimum inhibitory concentration (µg/ml)			
Test organism	Medium	Erythromycin	3	4	
Staphylococcus aureus Smith	I	0.2	0.1	0.4	
Staphylococcus aureus Terajima	I	0.1	0.1	0.2	
Staphylococcus epidermidis IID 866	I	0.2	0.1	0.2	
Staphylococcus epidermidis sp-al-1	I	0.2	0.1	0.2	
Streptococcus faecalis ATCC 8043	I	≦0.05	≤ 0.05	≤ 0.05	
Bacillus subtilis ATCC 6633	I	0.1	≤ 0.05	0.1	
Micrococcus luteus ATCC 9341	Ι	≤ 0.05	≤ 0.05	≤ 0.05	
Escherichia coli NIHJ JC-2	Ι	50	50	100	
Klebsiella pneumoniae IFO 3317	Ι	25	12.5	50	
Mycoplasma pneumoniae IID Wada	II	0.015	0.007	0.03	
Mycoplasma pneumoniae No. 112	II	0.007	0.007	0.015	

Table 2. Antibacterial activities of 6-O-methylerythromycin A (3) and 6,11-di-O-methylerythromycin A (4).

Medium I: Mueller-Hinton agar.

II: PPLO broth and agar (horse serum 17%).

erythronolide moiety.

The ¹³C NMR chemical shifts (Table 1) showed that *O*-methylation caused the downfield shifts of α -carbon (C-6 in **3** and **4**, C-11 in **4**) and the upfield shifts of β -carbon (C-5 & C-6Me in both **3** and **4**). By the application of the reported considerations with regard to *O*-methylation shift,^{4,5)} it was assigned that the methoxy group at 50.6 ppm in **3** is attached pseudo-axially at C-6 position and those at 50.6 and 60.8 ppm in 4 are located at C-6 and C-11 positions, respectively. Furthermore, the upfield shift of ¹⁸C NMR signal of C-9 ($\Delta \delta_c$ -4.3 compared with that of 1) and the IR peak of $\nu_{C=0}$ at 1703 cm⁻¹ ($\nu_{C=0}$ 1690 cm⁻¹ in 1 and 3) in 4, suggested the absence of the hydrogen bonding between 9-carbonyl and 6and 11-hydroxyl groups.^{4,6)} Thus, the structure of 3 and 4 has been elucidated as 6-*O*-methyland 6,11-di-O-methylerythromycin A, respectively.

On the other hand, product B was hydrogenated in the similar procedure as product A to give a white glass (38% yield). Crystallization from acetone gave colorless needles, mp $182 \sim 185$ °C. The structure of this compound was deduced from its spectral data to be 11-O-methylerythromycin A. Detailed description of the structure determination and *in vitro* antibiotic activity of this compound will be forthcoming.

6-O-Methylerythromycins (3 and 4) are far more acid-resistant. After 30-minute exposure of 1, 3 and 4 to a dilute hydrogen chloride solution (pH 2), their retained biological activities against *Staphylococcus aureus* 209P were 0.5, 95 and 95 %, respectively.

Table 2 shows the *in vitro* activity of 6-Omethylerythromycins A (3 and 4) compared to that of erythromycin against a variety of bacteria and *Mycoplasma* species. Especially, the activity of 3 is higher than that of erythromycin.

> Shigeo Morimoto Yoko Takahashi Yoshiaki Watanabe Sadafumi Ōmura*

Research Center, Taisho Pharmaceutical Co., Ltd. 1-403, Yoshino-cho, Ohmiya-shi, Saitama 330, Japan

(Received October 31, 1983)

References

- JONES, P. H.; J. B. MCALPINE, J. M. PAUVLIK & T. J. PERUN: 11-Substituted erythromycin B derivatives. US 3,884,904, May 20, 1975
- FLYNN, E. H.; H. W. MURPHY & R. E. MC-MAHON: Erythromycin. II. Des-N-methylerythromycin and N-methyl-C¹⁴-erythromycin. J. Am. Chem. Soc. 77: 3104~3106, 1955
- 3) EGAN, R. S.; J. R. MARTIN, J. B. MCALPINE, P. KURATH, R. S. STANASZEK, A. W. GOLDSTEIN & L. F. JOHNSON: The structures of the *m*chloroperbenzoic acid oxidation products of 8,9anhydroerythromycins A- and B-6,9-hemiacetal and of (8S)-8-hydroxyerythromycin B. J. Antibiotics 31: 55~62, 1978
- NOURSE, J. G. & J. D. ROBERTS: Nuclear magnetic resonance spectroscopy. Carbon-13 spectra of some macrolide antibiotics and derivatives. Substituent and conformational effects. J. Am. Chem. Soc. 97: 4584~4594, 1975
- 5) HAINES, A. H. & M. S. SHANDIZ: ¹⁸C Nuclear magnetic resonance spectra of methoxycyclohexane derivatives. Rotamer populations about C-OMe bonds as indicated by ¹⁸C chemical shifts of methoxy- and ring-carbons and ⁸J_{C,H} coupling constants. J. Chem. Soc., Perkin I 1981: 1671~ 1678, 1981
- 6) JONES, P. H.; T. J. PERUN, E. K. ROWLEY & E. J. BAKER: Chemical modifications of erythromycin antibiotics. 3. Synthesis of 4" and 11 esters of erythromycin A and B. J. Med. Chem. 15: 631~634, 1972